Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Frontiers in public health ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2269665

ABSTRACT

Background Mandatory COVID-19 certification, showing proof of vaccination, negative test, or recent infection to access to public venues, was introduced at different times in the four countries of the UK. We aim to study its effects on the incidence of cases and hospital admissions. Methods We performed Negative binomial segmented regression and ARIMA analyses for four countries (England, Northern Ireland, Scotland and Wales), and fitted Difference-in-Differences models to compare the latter three to England, as a negative control group, since it was the last country where COVID-19 certification was introduced. The main outcome was the weekly averaged incidence of COVID-19 cases and hospital admissions. Results COVID-19 certification led to a decrease in the incidence of cases and hospital admissions in Northern Ireland, as well as in Wales during the second half of November. The same was seen for hospital admissions in Wales and Scotland during October. In Wales the incidence rate of cases in October already had a decreasing tendency, as well as in England, hence a particular impact of COVID-19 certification was less obvious. Method assumptions for the Difference-in-Differences analysis did not hold for Scotland. Additional NBSR and ARIMA models suggest similar results, while also accounting for correlation in the latter. The assessment of the effect in England itself leads one to believe that this intervention might not be strong enough for the Omicron variant, which was prevalent at the time of introduction of COVID-19 certification in the country. Conclusions Mandatory COVID-19 certification reduced COVID-19 transmission and hospitalizations when Delta predominated in the UK, but lost efficacy when Omicron became the most common variant.

2.
Eur J Pediatr ; 182(5): 2421-2432, 2023 May.
Article in English | MEDLINE | ID: covidwho-2262738

ABSTRACT

Most studies, aimed at determining the incidence and transmission of SARS-CoV-2 in children and teenagers, have been developed in school settings. Our study conducted surveillance and inferred attack rates focusing on the practice of sports. Prospective and observational study of those attending the sports facilities of Fútbol Club Barcelona (FCB), in Barcelona, Spain, throughout the 2020-2021 season. Participants were young players (from five different sports) and adult workers, who belonged to stable teams (shared routines and were involved in same quarantine rules). Biweekly health questionnaires and SARS-CoV-2 screening were conducted. From the 234 participants included, 70 (30%) both lived and trained in the FCB facilities (Recruitment Pathway 1;RP1) and 164 (70%) lived at their own household and just came to the facilities to train (RP2). During the study, 38 positive cases were identified; none had severe symptoms or needed hospitalization. The overall weekly incidence in the cohorts did not differ compared to the one expected in the community, except for 2 weeks when an outbreak occurred. The attack rate (AR) was three times higher for the participants from RP1, in comparison to those from RP2 (p < 0.01). A Basketball team showed a significant higher AR.  Conclusion: Physical activities in stable teams are not related to an increased risk of transmission of SARS-CoV-2, since there were the same observed cases than expected in the community. The risk is higher in indoor sports (Basketball vs. Football), and in closed cohort living settings (RP1 vs. RP2). The fulfilment of preventive measures is essential. What is Known: • Despite the low numerical impact caused in paediatric hospitalizations during COVID-19 pandemic, the social impact has been maximum. • The transmission potential in children and teenagers is limited, and it had been widely demonstrated in school settings. What is New: • Group physical activities in children and teenagers are not also related to an increased risk of transmission of SARS-CoV-2, when preventive measures, such as washing hands, and screening protocols are applied. • Routine and semi-professional sports activities seem safe environments to promote during this pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adolescent , Young Adult , Child , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Prospective Studies , Quarantine
3.
Arch Dis Child ; 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2255474

ABSTRACT

OBJECTIVE: To assess the effectiveness of mandatory use of face covering masks (FCMs) in schools during the first term of the 2021-2022 academic year. DESIGN: A retrospective population-based study. SETTING: Schools in Catalonia (Spain). POPULATION: 599 314 children aged 3-11 years attending preschool (3-5 years, without FCM mandate) and primary education (6-11 years, with FCM mandate). STUDY PERIOD: From 13 September to 22 December 2021 (before Omicron variant). INTERVENTIONS: A quasi-experimental comparison between children in the last grade of preschool (5 years old), as a control group, and children in year 1 of primary education (6 years old), as an interventional group. MAIN OUTCOME MEASURES: Incidence of SARS-CoV-2, secondary attack rates (SARs) and effective reproductive number (R*). RESULTS: SARS-CoV-2 incidence was significantly lower in preschool than in primary education, and an increasing trend with age was observed. Six-year-old children showed higher incidence than 5 year olds (3.54% vs 3.1%; OR 1.15 (95% CI 1.08 to 1.22)) and slightly lower but not statistically significant SAR (4.36% vs 4.59%; incidence risk ratio 0.96 (95% CI 0.82 to 1.11)) and R* (0.9 vs 0.93; OR 0.96 (95% CI 0.87 to 1.09)). Results remained consistent using a regression discontinuity design and linear regression extrapolation approaches. CONCLUSIONS: We found no significant differences in SARS-CoV-2 transmission due to FCM mandates in Catalonian schools. Instead, age was the most important factor in explaining the transmission risk for children attending school.

4.
Front Public Health ; 11: 1019223, 2023.
Article in English | MEDLINE | ID: covidwho-2269666

ABSTRACT

Background: Mandatory COVID-19 certification, showing proof of vaccination, negative test, or recent infection to access to public venues, was introduced at different times in the four countries of the UK. We aim to study its effects on the incidence of cases and hospital admissions. Methods: We performed Negative binomial segmented regression and ARIMA analyses for four countries (England, Northern Ireland, Scotland and Wales), and fitted Difference-in-Differences models to compare the latter three to England, as a negative control group, since it was the last country where COVID-19 certification was introduced. The main outcome was the weekly averaged incidence of COVID-19 cases and hospital admissions. Results: COVID-19 certification led to a decrease in the incidence of cases and hospital admissions in Northern Ireland, as well as in Wales during the second half of November. The same was seen for hospital admissions in Wales and Scotland during October. In Wales the incidence rate of cases in October already had a decreasing tendency, as well as in England, hence a particular impact of COVID-19 certification was less obvious. Method assumptions for the Difference-in-Differences analysis did not hold for Scotland. Additional NBSR and ARIMA models suggest similar results, while also accounting for correlation in the latter. The assessment of the effect in England itself leads one to believe that this intervention might not be strong enough for the Omicron variant, which was prevalent at the time of introduction of COVID-19 certification in the country. Conclusions: Mandatory COVID-19 certification reduced COVID-19 transmission and hospitalizations when Delta predominated in the UK, but lost efficacy when Omicron became the most common variant.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , United Kingdom/epidemiology , Hospitalization , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , COVID-19 Vaccines/administration & dosage , SARS-CoV-2 , Incidence , Mandatory Programs
7.
Pediatr Infect Dis J ; 41(12): 989-993, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2190916

ABSTRACT

BACKGROUND: SARS-CoV-2 variations as well as immune protection after previous infections and/or vaccination may have altered the incidence of multisystemic inflammatory syndrome in children (MIS-C). We aimed to report an international time-series analysis of the incidence of MIS-C to determine if there was a shift in the regions or countries included into the study. METHODS: This is a multicenter, international, cross-sectional study. We collected the MIS-C incidence from the participant regions and countries for the period July 2020 to November 2021. We assessed the ratio between MIS-C cases and COVID-19 pediatric cases in children <18 years diagnosed 4 weeks earlier (average time for the temporal association observed in this disease) for the study period. We performed a binomial regression analysis for 8 participating sites [Bogotá (Colombia), Chile, Costa Rica, Lazio (Italy), Mexico DF, Panama, The Netherlands and Catalonia (Spain)]. RESULTS: We included 904 cases of MIS-C, among a reference population of 17,906,432 children. We estimated a global significant decrease trend ratio in MIS-C cases/COVID-19 diagnosed cases in the previous month ( P < 0.001). When analyzing separately each of the sites, Chile and The Netherlands maintained a significant decrease trend ( P < 0.001), but this ratio was not statistically significant for the rest of sites. CONCLUSIONS: To our knowledge, this is the first international study describing a global reduction in the trend of the MIS-C incidence during the pandemic. COVID-19 vaccination and other factors possibly linked to the virus itself and/or community transmission may have played a role in preventing new MIS-C cases.


Subject(s)
COVID-19 , Pandemics , Humans , Child , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Cross-Sectional Studies , Incidence , COVID-19 Vaccines , Systemic Inflammatory Response Syndrome/epidemiology
8.
PLoS One ; 17(11): e0277754, 2022.
Article in English | MEDLINE | ID: covidwho-2119349

ABSTRACT

BACKGROUND: Family clusters offer a good opportunity to study viral transmission in a stable setting. We aimed to analyze the specific role of children in transmission of SARS-CoV-2 within households. METHODS: A prospective, longitudinal, observational study, including children with documented acute SARS-CoV-2 infection attending 22 summer-schools in Barcelona, Spain, was performed. Moreover, other patients and families coming from other school-like environments that voluntarily accessed the study were also studied. A longitudinal follow-up (5 weeks) of the family clusters was conducted to determine whether the children considered to be primary cases were able to transmit the virus to other family members. The household reproduction number (Re*) and the secondary attack rate (SAR) were calculated. RESULTS: 1905 children from the summer schools were screened for SARS-CoV-2 infection and 22 (1.15%) tested positive. Moreover, 32 additional children accessed the study voluntarily. Of these, 37 children and their 26 households were studied completely. In half of the cases (13/26), the primary case was considered to be a child and secondary transmission to other members of the household was observed in 3/13, with a SAR of 14.2% and a Re* of 0.46. Conversely, the SAR of adult primary cases was 72.2% including the kids that gave rise to the contact tracing study, and 61.5% without them, and the estimated Re* was 2.6. In 4/13 of the paediatric primary cases (30.0%), nasopharyngeal PCR was persistently positive > 1 week after diagnosis, and 3/4 of these children infected another family member (p<0.01). CONCLUSIONS: Children may not be the main drivers of the infection in household transmission clusters in the study population. A prolonged positive PCR could be associated with higher transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Child , Spain/epidemiology , COVID-19/epidemiology , Prospective Studies , Family Characteristics
9.
Front Public Health ; 10: 961030, 2022.
Article in English | MEDLINE | ID: covidwho-2022985

ABSTRACT

Purpose: We aim to compare the severity of infections between omicron and delta variants in 609,352 SARS-CoV-2 positive cases using local hospitalization, vaccination, and variants data from the Catalan Health Care System (which covers around 7. 8 million people). Methods: We performed a substitution model to establish the increase in transmissibility of omicron using variant screening data from primary care practices (PCP) and hospital admissions. In addition, we used this data from PCP to establish the two periods when delta and omicron were, respectively, dominant (above 95% of cases). After that, we performed a population-based cohort analysis to calculate the rates of hospital and intensive care unit (ICU) admissions for both periods and to estimate reduction in severity. Rate ratios (RR) and 95% confidence intervals (95% CI) were calculated and stratified by age and vaccination status. In a second analysis, the differential substitution model in primary care vs. hospitals allowed us to obtain a population-level average change in severity. Results: We have included 48,874 cases during the delta period and 560,658 during the omicron period. During the delta period, on average, 3.8% of the detected cases required hospitalization for COVID-19. This percentage dropped to 0.9% with omicron [RR of 0.46 (95% CI: 0.43 to 0.49)]. For ICU admissions, it dropped from 0.8 to 0.1% [RR 0.25 (95% CI: 0.21 to 0.28)]. The proportion of cases hospitalized or admitted to ICU was lower in the vaccinated groups, independently of the variant. Omicron was associated with a reduction in risk of admission to hospital and ICU in all age and vaccination status strata. The differential substitution models showed an average RR between 0.19 and 0.50. Conclusion: Both independent methods consistently show an important decrease in severity for omicron relative to delta. The systematic reduction happens regardless of age. The severity is also reduced for non-vaccinated and vaccinated groups, but it remains always higher in the non-vaccinated population. This suggests an overall reduction in severity, which could be intrinsic to the omicron variant. The fact is that the RR in ICU admission is systematically smaller than in hospitalization points in the same direction.


Subject(s)
COVID-19 , SARS-CoV-2 , Cohort Studies , Critical Care , Hospitalization , Humans , Spain
10.
Sci Rep ; 12(1): 15073, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-2008306

ABSTRACT

While wastewater-based epidemiology has proven a useful tool for epidemiological surveillance during the COVID-19 pandemic, few quantitative models comparing virus concentrations in wastewater samples and cumulative incidence have been established. In this work, a simple mathematical model relating virus concentration and cumulative incidence for full contagion waves was developed. The model was then used for short-term forecasting and compared to a local linear model. Both scenarios were tested using a dataset composed of samples from 32 wastewater treatment plants and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence data covering the corresponding geographical areas during a 7-month period, including two contagion waves. A population-averaged dataset was also developed to model and predict the incidence over the full geography. Overall, the mathematical model based on wastewater data showed a good correlation with cumulative cases and allowed us to anticipate SARS-CoV-2 incidence in one week, which is of special relevance in situations where the epidemiological monitoring system cannot be fully implemented.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Incidence , Pandemics , RNA, Viral , Spain/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring
11.
Pediatr Infect Dis J ; 40(11): 955-961, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1758891

ABSTRACT

BACKGROUND: We analyzed contagions of coronavirus disease 2019 inside school bubble groups in Catalonia, Spain, in the presence of strong nonpharmaceutical interventions from September to December 2020. More than 1 million students were organized in bubble groups and monitored and analyzed by the Health and the Educational departments. METHODS: We had access to 2 data sources, and both were employed for the analysis, one is the Catalan school surveillance system and the other of the educational department. As soon as a positive index case is detected by the health system, isolation is required for all members of the bubble group, in addition to a mandatory proactive systematic screening of each individual. All infected cases are reported. It permits the calculation of the average reproductive number (R*), corresponding to the average number of infected individuals per index case. RESULTS: We found that propagation inside of the bubble group was small. Among 75% index cases, there was no transmission to other members in the classroom, with an average R* across all ages inside the bubble of R* = 0.4. We found a significant age trend in the secondary attack rates, with the R* going from 0.2 in preschool to 0.6 in high school youth. CONCLUSIONS: The secondary attack rate depends on the school level and therefore on the age. Super-spreading events (outbreaks of 5 cases or more) in childhood were rare, only occurring in 2.5% of all infections triggered from a pediatric index case.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2 , Schools , Students , Adolescent , Age Factors , Algorithms , Child , Child, Preschool , Disease Outbreaks , Female , Humans , Male , Models, Statistical , Population Surveillance , Spain/epidemiology
12.
PLoS One ; 17(2): e0263741, 2022.
Article in English | MEDLINE | ID: covidwho-1690714

ABSTRACT

BACKGROUND: Despite their clear lesser vulnerability to COVID-19, the extent by which children are susceptible to getting infected by SARS-CoV-2 and their capacity to transmit the infection to other people remains inadequately characterized. We aimed to evaluate the role of school reopening and the preventive strategies in place at schools in terms of overall risk for children and community transmission, by comparing transmission rates in children as detected by a COVID-19 surveillance platform in place in Catalonian Schools to the incidence at the community level. METHODS AND FINDINGS: Infections detected in Catalan schools during the entire first trimester of classes (September-December 2020) were analysed and compared with the ongoing community transmission and with the modelled predicted number of infections. There were 30.486 infections (2.12%) documented among the circa 1.5M pupils, with cases detected in 54.0% and 97.5% of the primary and secondary centres, respectively. During the entire first term, the proportion of "bubble groups" (stable groups of children doing activities together) that were forced to undergo confinement ranged between 1 and 5%, with scarce evidence of substantial intraschool transmission in the form of chains of infections, and with ~75% of all detected infections not leading to secondary cases. Mathematical models were also used to evaluate the effect of different parameters related to the defined preventive strategies (size of the bubble group, number of days of confinement required by contacts of an index case). The effective reproduction number inside the bubble groups in schools (R*), defined as the average number of schoolmates infected by each primary case within the bubble, was calculated, yielding a value of 0.35 for primary schools and 0.55 for secondary schools, and compared with the outcomes of the mathematical model, implying decreased transmissibility for children in the context of the applied measures. Relative homogenized monthly cumulative incidence ([Formula: see text]) was assessed to compare the epidemiological dynamics among different age groups and this analysis suggested the limited impact of infections in school-aged children in the context of the overall community incidence. CONCLUSIONS: During the fall of 2020, SARS-CoV-2 infections and COVID-19 cases detected in Catalan schools closely mirrored the underlying community transmission from the neighbourhoods where they were set and maintaining schools open appeared to be safe irrespective of underlying community transmission. Preventive measures in place in those schools appeared to be working for the early detection and rapid containment of transmission and should be maintained for the adequate and safe functioning of normal academic and face-to-face school activities.


Subject(s)
COVID-19 , Residence Characteristics , Schools , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Humans , Incidence , Models, Theoretical , Spain/epidemiology
13.
Clin Infect Dis ; 74(1): 66-73, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1633721

ABSTRACT

BACKGROUND: Understanding the role of children in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is critical to guide decision-making for schools in the pandemic. We aimed to describe the transmission of SARS-CoV-2 among children and adult staff in summer schools. METHODS: During July 2020, we prospectively recruited children and adult staff attending summer schools in Barcelona who had SARS-CoV-2 infection. Primary SARS-CoV-2 infections were identified through (1) a surveillance program in 22 summer schools of 1905 participants, involving weekly saliva sampling for SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR) during 2-5 weeks; and (2) cases identified through the Catalonian Health Surveillance System of children diagnosed with SARS-CoV-2 infection by nasopharyngeal RT-PCR. All centers followed prevention protocols: bubble groups, handwashing, face masks, and conducting activities mostly outdoors. Contacts of a primary case within the same bubble were evaluated by nasopharyngeal RT-PCR. Secondary attack rates and the effective reproduction number in summer schools (Re*) were calculated. RESULTS: Among the >2000 repeatedly screened participants, 30 children and 9 adults were identified as primary cases. A total of 253 close contacts of these primary cases were studied (median, 9 [interquartile range, 5-10] for each primary case), among which 12 new cases (4.7%) were positive for SARS-CoV-2. The Re* was 0.3, whereas the contemporary rate in the general population from the same areas in Barcelona was 1.9. CONCLUSIONS: The transmission rate of SARS-CoV-2 infection among children attending school-like facilities under strict prevention measures was lower than that reported for the general population. This suggests that under preventive measures schools are unlikely amplifiers of SARS-CoV-2 transmission, supporting current recommendations for school opening.


Subject(s)
COVID-19 , Adult , Child , Humans , Pandemics , SARS-CoV-2 , Schools , Spain/epidemiology
14.
Vaccines (Basel) ; 10(1)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1614022

ABSTRACT

(1) Background: In epidemiological terms, it has been possible to calculate the savings in health resources and the reduction in the health effects of COVID vaccines. Conducting an economic evaluation, some studies have estimated its cost-effectiveness; the vaccination shows highly favorable results, cost-saving in some cases. (2) Methods: Cost-benefit analysis of the vaccination campaign in the North Metropolitan Health Region (Catalonia). An epidemiological model based on observational data and before and after comparison is used. The information on the doses used and the assigned resources (conventional hospital beds, ICU, number of tests) was extracted from administrative data from the largest primary care provider in the region (Catalan Institute of Health). A distinction was made between the social perspective and the health system. (3) Results: the costs of vaccination are estimated at 137 million euros (€48.05/dose administered). This figure is significantly lower than the positive impacts of the vaccination campaign, which are estimated at 470 million euros (€164/dose administered). Of these, 18% corresponds to the reduction in ICU discharges, 16% to the reduction in conventional hospital discharges, 5% to the reduction in PCR tests and 1% to the reduction in RAT tests. The monetization of deaths and cases that avoid sequelae account for 53% and 5% of total savings, respectively. The benefit/cost ratio is estimated at 3.4 from a social perspective and 1.4 from a health system perspective. The social benefits of vaccination are estimated at €116.67 per vaccine dose (€19.93 from the perspective of the health system). (4) Conclusions: The mass vaccination campaign against COVID is cost-saving. From a social perspective, most of these savings come from the monetization of the reduction in mortality and cases with sequelae, although the intervention is equally widely cost-effective from the health system perspective thanks to the reduction in the use of resources. It is concluded that, from an economic perspective, the vaccination campaign has high social returns.

15.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1580399

ABSTRACT

BACKGROUND: Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is neither always accessible nor easy to perform in children. We aimed to propose a machine learning model to assess the need for a SARS-CoV-2 test in children (<16 years old), depending on their clinical symptoms. METHODS: Epidemiological and clinical data were obtained from the REDCap® registry. Overall, 4434 SARS-CoV-2 tests were performed in symptomatic children between 1 November 2020 and 31 March 2021, 784 were positive (17.68%). We pre-processed the data to be suitable for a machine learning (ML) algorithm, balancing the positive-negative rate and preparing subsets of data by age. We trained several models and chose those with the best performance for each subset. RESULTS: The use of ML demonstrated an AUROC of 0.65 to predict a COVID-19 diagnosis in children. The absence of high-grade fever was the major predictor of COVID-19 in younger children, whereas loss of taste or smell was the most determinant symptom in older children. CONCLUSIONS: Although the accuracy of the models was lower than expected, they can be used to provide a diagnosis when epidemiological data on the risk of exposure to COVID-19 is unknown.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Adolescent , COVID-19/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Machine Learning , Male , Models, Statistical , Predictive Value of Tests
16.
Front Pediatr ; 9: 754744, 2021.
Article in English | MEDLINE | ID: covidwho-1441127

ABSTRACT

Objective: We describe and analyze the childhood (<18 years) COVID-19 incidence in Catalonia, Spain, during the first 36 weeks of the 2020-2021 school-year and to compare it with the incidence in adults. Methods: Data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests were obtained from the Catalan Agency for Quality and Health Assessment. Overall, 7,203,663 SARS-CoV-2 tests were performed, of which 491,819 were positive (6.8%). We collected epidemiological data including age-group incidence, diagnostic effort, and positivity rate per 100,000 population to analyze the relative results for these epidemiological characteristics. Results: Despite a great diagnostic effort among children, with a difference of 1,154 tests per 100,000 population in relation to adults, the relative incidence of SARS-CoV-2 for <18 years was slightly lower than for the general population, and it increased with the age of the children. Additionally, positivity of SARS-CoV-2 in children (5.7%) was lower than in adults (7.2%), especially outside vacation periods, when children were attending school (4.9%). Conclusions: A great diagnostic effort, including mass screening and systematic whole-group contact tracing when a positive was detected in the class group, was associated with childhood SARS-CoV-2 incidence and lower positivity rate in the 2020-2021 school year. Schools have been a key tool in epidemiological surveillance rather than being drivers of SARS-CoV-2 incidence in Catalonia, Spain.

17.
Sci Rep ; 11(1): 18812, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434151

ABSTRACT

Different strategies have been used to maximise the effect of COVID-19 vaccination campaigns in Europe. We modelled the impact of different prioritisation choices and dose intervals on infections, hospitalisations, mortality, and public health restrictions. An agent-based model was built to quantify the impact of different vaccination strategies over 6 months. Input parameters were derived from published phase 3 trials and official European figures. We explored the effect of prioritising vulnerable people, care-home staff and residents, versus contagious groups; and the impact of dose intervals ranging from 3 to 12 weeks. Prioritising vulnerable people, rather than the most contagious, led to higher numbers of COVID-19 infections, whilst reducing mortality, hospital admissions, and public health restrictions. At a realistic vaccination speed of ≤ 0·1% population/day, separating doses by 12 weeks (vs a baseline scenario of 3 weeks) reduced hospitalisations, mortality, and restrictions for vaccines with similar first- and second-dose efficacy (e.g., the Oxford-AstraZeneca and Moderna vaccines), but not for those with lower first vs second-dose efficacy (e.g., the Pfizer/BioNTech vaccine). Mass vaccination will dramatically reduce the effect of COVID-19 on Europe's health and economy. Early vaccination of vulnerable populations will reduce mortality, hospitalisations, and public health restrictions compared to prioritisation of the most contagious people. The choice of interval between doses should be based on expected vaccine availability and first-dose efficacy, with 12-week intervals preferred over shorter intervals in most realistic scenarios.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , COVID-19/epidemiology , Cohort Studies , Computer Simulation , Disease Susceptibility , Europe/epidemiology , Hospitalization/statistics & numerical data , Humans , Immunization Schedule , Models, Theoretical , Public Health/methods , Time Factors , Vulnerable Populations
18.
Front Public Health ; 9: 633123, 2021.
Article in English | MEDLINE | ID: covidwho-1325582

ABSTRACT

The current worldwide pandemic produced by coronavirus disease 2019 (COVID-19) has changed the paradigm of mathematical epidemiology due to the high number of unknowns of this new disease. Thus, the empirical approach has emerged as a robust tool to analyze the actual situation carried by the countries and also allows us to predict the incoming scenarios. In this paper, we propose three empirical indexes to estimate the state of the pandemic. These indexes quantify both the propagation and the number of estimated cases, allowing us to accurately determine the real risk of a country. We have calculated these indexes' evolution for several European countries. Risk diagrams are introduced as a tool to visualize the evolution of a country and evaluate its current risk as a function of the number of contagious individuals and the empiric reproduction number. Risk diagrams at the regional level are useful to observe heterogeneity on COVID-19 penetration and spreading in some countries, which is essential during deconfinement processes. During the pandemic, there have been significant differences seen in countries reporting case criterion and detection capacity. Therefore, we have introduced estimations about the real number of infectious cases that allows us to have a broader view and to better estimate the risk. These diagrams and indexes have been successfully used for the monitoring of European countries and regions during the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Europe , Humans , SARS-CoV-2
19.
Front Public Health ; 9: 693956, 2021.
Article in English | MEDLINE | ID: covidwho-1320593

ABSTRACT

Monitoring transmission is a prerequisite for containing COVID-19. We report on effective potential growth (EPG) as a novel measure for the early identification of local outbreaks based on primary care electronic medical records (EMR) and PCR-confirmed cases. Secondly, we studied whether increasing EPG precedes local hospital and intensive care (ICU) admissions and mortality. Population-based cohort including all Catalan citizens' PCR tests, hospitalization, intensive care (ICU) and mortality between 1/07/2020 and 13/09/2020; linked EMR covering 88.6% of the Catalan population was obtained. Nursing home residents were excluded. COVID-19 counts were ascertained based on EMR and PCRs separately. Weekly empirical propagation (ρ7) and 14-day cumulative incidence (A14) and 95% confidence intervals were estimated at care management area (CMA) level, and combined as EPG = ρ7 × A14. Overall, 7,607,201 and 6,798,994 people in 43 CMAs were included for PCR and EMR measures, respectively. A14, ρ7, and EPG increased in numerous CMAs during summer 2020. EMR identified 2.70-fold more cases than PCRs, with similar trends, a median (interquartile range) 2 (1) days earlier, and better precision. Upticks in EPG preceded increases in local hospital admissions, ICU occupancy, and mortality. Increasing EPG identified localized outbreaks in Catalonia, and preceded local hospital and ICU admissions and subsequent mortality. EMRs provided similar estimates to PCR, but some days earlier and with better precision. EPG is a useful tool for the monitoring of community transmission and for the early identification of COVID-19 local outbreaks.


Subject(s)
COVID-19 , Disease Outbreaks , Electronic Health Records , Humans , Primary Health Care , Prospective Studies , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Spain/epidemiology
20.
ISPRS International Journal of Geo-Information ; 10(2):73, 2021.
Article in English | MDPI | ID: covidwho-1085076

ABSTRACT

The COVID-19 pandemic is changing the world in unprecedented and unpredictable ways. Human mobility, being the greatest facilitator for the spread of the virus, is at the epicenter of this change. In order to study mobility under COVID-19, to evaluate the efficiency of mobility restriction policies, and to facilitate a better response to future crisis, we need to understand all possible mobility data sources at our disposal. Our work studies private mobility sources, gathered from mobile-phones and released by large technological companies. These data are of special interest because, unlike most public sources, it is focused on individuals rather than on transportation means. Furthermore, the sample of society they cover is large and representative. On the other hand, these data are not directly accessible for anonymity reasons. Thus, properly interpreting its patterns demands caution. Aware of that, we explore the behavior and inter-relations of private sources of mobility data in the context of Spain. This country represents a good experimental setting due to both its large and fast pandemic peak and its implementation of a sustained, generalized lockdown. Our work illustrates how a direct and naive comparison between sources can be misleading, as certain days (e.g., Sundays) exhibit a directly adverse behavior. After understanding their particularities, we find them to be partially correlated and, what is more important, complementary under a proper interpretation. Finally, we confirm that mobile-data can be used to evaluate the efficiency of implemented policies, detect changes in mobility trends, and provide insights into what new normality means in Spain.

SELECTION OF CITATIONS
SEARCH DETAIL